Sharp Constants in Several Inequalities on the Heisenberg Group Rupert L. Frank and Elliott H. Lieb
نویسنده
چکیده
Abstract. We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Laplacian and conformally invariant fractional Laplacians. By considering limiting cases of these inequalities sharp constants for the analogues of the Onofri and log-Sobolev inequalities on H are obtained. The methodology is completely different from that used to obtain the R inequalities and can be (and has been) used to give a new, rearrangement free, proof of the HLS inequalities.
منابع مشابه
Sharp constants in several inequalities on the Heisenberg group
We derive the sharp constants for the inequalities on the Heisenberg group H whose analogues on Euclidean space R are the well known Hardy-Littlewood-Sobolev inequalities. Only one special case had been known previously, due to Jerison-Lee more than twenty years ago. From these inequalities we obtain the sharp constants for their duals, which are the Sobolev inequalities for the Laplacian and c...
متن کاملA New, Rearrangement-free Proof of the Sharp Hardy-littlewood-sobolev Inequality
We show that the sharp constant in the Hardy-Littlewood-Sobolev inequality can be derived using the method that we employed earlier for a similar inequality on the Heisenberg group. The merit of this proof is that it does not rely on rearrangement inequalities; it is the first one to do so for the whole parameter range.
متن کاملSpectral Inequalities for Schrödinger Operators with Surface Potentials
We prove sharp Lieb-Thirring inequalities for Schrödinger operators with potentials supported on a hyperplane and we show how these estimates are related to LiebThirring inequalities for relativistic Schrödinger operators.
متن کاملLieb-Thirring inequalities for Schrödinger operators with complex-valued potentials
Inequalities are derived for power sums of the real part and the modulus of the eigenvalues of a Schrödinger operator with a complexvalued potential. Work partially supported by the Swedish Foundation for International Cooperation in Research and Higher Education (STINT). Work partially supported by U.S. National Science Foundation grant PHY 01 39984. Work partially supported by U.S. National S...
متن کاملA Simple Proof of Hardy-lieb-thirring Inequalities
We give a short and unified proof of Hardy-Lieb-Thirring inequalities for moments of eigenvalues of fractional Schrödinger operators. The proof covers the optimal parameter range. It is based on a recent inequality by Solovej, Sørensen, and Spitzer. Moreover, we prove that any non-magnetic Lieb-Thirring inequality implies a magnetic Lieb-Thirring inequality (with possibly a larger constant).
متن کامل